DPP - 9 (Electrostatics)

Video Solution on Website:-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/93
https://youtu.be/Xor7WFTt_YE

Written Solution on Website:-

Q 1. A, B \& C are three concentric metallic shells. Shell A is the inner most and shell C is the outermost. A is given some charge and shell C is earthed-
(a) The inner surfaces of $B \& C$ will have the same charge
(b) The inner surface of $B \& C$ will have same charge density
(c) The outer surface of $A, B \& C$ will have the same charge
(d) The outer surface of C will have no charge density

Q 2. A conducting sphere A of radius a, with charge Q, is placed concentrically inside a conducting shell B of radius b. B is earthed. C is the common centre of A and B

(a) The field at a distancer from C , where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $\frac{\mathrm{KQ}}{\mathrm{r}^{2}}$
(b) The potential at a distance r from C , where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $\frac{K Q}{r}$
(e) The potential difference between A and B is $K Q\left(\frac{1}{a}-\frac{1}{b}\right)$
(d) The potential at a distance r from C, where $\mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$, is $K Q\left(\frac{1}{r}-\frac{1}{b}\right)$

Comprehension (Q3 to Q5)

Two conducting spheres of radius R and $3 R$ carry charges Q and $-2 Q$. Between these spheres a neutral conducting sphere of radius $2 R$ is connected. The separation between the sphere is considerably large. Charge flows through conducting wire due to potential difference.

Q 3. The final charge on initially neutral conducting sphere is:
(a) $-\frac{Q}{6}$
(b) $-\frac{Q}{3}$
(c) $\frac{Q}{3}$
(d) $-\frac{Q}{2}$

Q 4. The decrease in electric potential energy of sphere of radius R is:
(a) $\frac{k Q^{2}}{4 R}$
(b) $\frac{35 k Q^{2}}{72 R}$
(c) $\frac{k Q^{2}}{72 R}$
(d) none

Q 5. The final electric potential of sphere of radius 3 R will be:
(a) $-\frac{k Q}{6 R}$
(b) $-\frac{k Q}{2 R}$
(c) $-\frac{2 k Q}{3 R}$
(d) $-\frac{3 k Q}{R}$

Q 6. A solid conducting sphere of radius 10 cm is enclosed by a thin metallic shell of radius 20 cm . A charge $\mathrm{q}=20 \mu \mathrm{C}$ is given to the inner sphere. Find the heat generated in the process, the inner sphere is connected to the shell by a conducting wire
(a) 12 J
(b) 9 J
(c) 24 J
(d) zero

Q 7. Two concentric shells have radii R and 2 R charges q_{A} and q_{B} and potentials 2 V and (3/2)V respectively. Now shell B is earthed and let charges on them become q_{A}^{\prime} and q_{B}^{\prime}. Then:

(a) $q_{A} / q_{B}=1 / 2$
(b) $q_{A}^{\prime} / q_{B}^{\prime}=1$
(c) potential of A after earthing becomes $(3 / 2) \mathrm{V}$
(d) Potential difference between A and B after earthing becomes $V / 2$

Q 8. Three concentric conducting spherical shells have radii $\mathrm{r}, 2 \mathrm{r}$ and 3 r and charges q_{1}, q_{2} and q_{3} respectively. Innermost and outermost shells are earthed as shown in figure. Select the correct alternative(s)

(a) $q_{1}+q_{3}=-q_{2}$
(b) $q_{1}=-\frac{q_{2}}{4}$
(c) $\frac{q_{3}}{q_{1}}=3$
(d) $\frac{q_{3}}{q_{2}}=-\frac{1}{3}$

Q 9. There are two concentric metal shells of radii r_{1} and $r_{2}\left(>r_{1}\right)$. If the outer shell has a charge q and the inner shell is grounded, the charge on the inner shell is
(a) zero
(b) $-\left(r_{1} / r_{2}\right) \mathrm{q}$
(c) $r_{1} r_{2} q$
(d) infinity

Q 10. $\quad \mathrm{X}$ and Y are large, parallel conducting plates close to each other. Each face has an area $\mathrm{A} . \mathrm{X}$ is given a charge Q . Y is without any charge. Points A, B and C are as shown in the figure.

(a) The field at B is $\frac{Q}{2 \varepsilon_{0} A}$
(b) The field at B is $\frac{Q}{\varepsilon_{0} A}$
(c) The fields at A, B and C are of the same magnitude.
(d) The fields at A and C are of the same magnitude, but in opposite directions.

Q 11. A conducting sphere of radius R, carrying charge Q, lies inside an uncharged conducting shell of radius $2 R$. If they are joined by a metal wire,
(a) $\mathrm{Q} / 3$ amount of charge will flow from the sphere to the shell
(b) $2 \mathrm{Q} / 3$ amount of charge will flow from the sphere to the shell
(c) Q amount of charge will flow from the sphere to the shell
(d) $\mathrm{k} \frac{Q^{2}}{4 R}$ amount of heat will be produced

Q 12. In Given figure all three conductor plates are parallel and identical. Magnitude of charge which will move through switch after closing switch is

(a) Q
(b) $2 Q / 3$
(c) $4 Q / 3$
(d) $Q / 3$

Answer Key

Q. 1 a, d	Q. 2 a, c, d	Q. 3 b	Q. 4 b	Q. 5 a
Q. 6 b	Q. 7 a, d	Q. 8 a, b, c	Q. 9 b	Q. 10 a, c, d
Q. $11 \mathrm{c}, \mathrm{d}$	Q. 12 b			

